Python supports various data types to handle different kinds of data. These data types define the type of value a variable can hold. Understanding data types is essential for effective programming in Python.
1. Numeric Data Types
Python provides three primary numeric data types:
- Integer (
int
): Whole numbers, positive or negative. - Floating Point (
float
): Decimal numbers. - Complex Numbers (
complex
): Numbers with a real and an imaginary part.
Examples:
x = 10 # Integer y = 3.14 # Float z = 2 + 3j # Complex Number print(type(x)) # Output: <class 'int'> print(type(y)) # Output: <class 'float'> print(type(z)) # Output: <class 'complex'>
2. String Data Type
Strings (str
) represent text and are enclosed in single ('
) or double ("
) quotes.
Examples:
name = "Alice" greeting = 'Hello, World!' print(type(name)) # Output: <class 'str'>
Multiline strings use triple quotes:
message = """This is a multiline string."""
3. Boolean Data Type
Boolean (bool
) represents two values: True
or False
.
is_python_fun = True is_java_hard = False print(type(is_python_fun)) # Output: <class 'bool'>
4. List Data Type
Lists (list
) are ordered, mutable (changeable) collections of items.
fruits = ["Apple", "Banana", "Cherry"] fruits.append("Orange") # Adds an item print(fruits[0]) # Output: Apple print(type(fruits)) # Output: <class 'list'>
5. Tuple Data Type
Tuples (tuple
) are ordered but immutable (cannot be changed after creation).
colors = ("Red", "Green", "Blue") print(colors[1]) # Output: Green print(type(colors)) # Output: <class 'tuple'>
6. Set Data Type
Sets (set
) store unique items in an unordered collection.
numbers = {1, 2, 3, 4, 4, 5} # Duplicate 4 is ignored print(numbers) # Output: {1, 2, 3, 4, 5} print(type(numbers)) # Output: <class 'set'>
7. Dictionary Data Type
Dictionaries (dict
) store key-value pairs.
person = {"name": "Alice", "age": 25, "city": "New York"} print(person["name"]) # Output: Alice print(type(person)) # Output: <class 'dict'>
8. NoneType
The None
type represents the absence of a value.
result = None print(type(result)) # Output: <class 'NoneType'>
9. Type Conversion
Python allows converting data types using built-in functions:
int()
– Converts to an integer.float()
– Converts to a floating-point number.str()
– Converts to a string.bool()
– Converts to a boolean.list()
– Converts to a list.
Examples:
x = "10" y = int(x) # Converts string to integer print(y, type(y)) # Output: 10 <class 'int'>
Understanding Python’s data types is crucial for writing efficient and error-free programs. These data types allow developers to store and manipulate different types of data effectively.